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Abstract: Accurate projections of seasonal agricultural output are essential for improving food
security. However, the collection of agricultural information through seasonal agricultural surveys
is often not timely enough to inform public and private stakeholders about crop status during the
growing season. Acquiring timely and accurate crop estimates can be particularly challenging
in countries with predominately smallholder farms because of the large number of small plots,
intense intercropping, and high diversity of crop types. In this study, we used RGB images collected
from unmanned aerial vehicles (UAVs) flown in Rwanda to develop a deep learning algorithm for
identifying crop types, specifically bananas, maize, and legumes, which are key strategic food crops
in Rwandan agriculture. The model leverages advances in deep convolutional neural networks and
transfer learning, employing the VGG16 architecture and the publicly accessible ImageNet dataset for
pretraining. The developed model performs with an overall test set F1 of 0.86, with individual classes
ranging from 0.49 (legumes) to 0.96 (bananas). Our findings suggest that although certain staple
crops such as bananas and maize can be classified at this scale with high accuracy, crops involved in
intercropping (legumes) can be difficult to identify consistently. We discuss the potential use cases for
the developed model and recommend directions for future research in this area.

Keywords: remote sensing; crop analytics; crop mapping; UAVs; machine learning; convolutional
neural networks; deep learning; smallholder systems

1. Introduction

1.1. Background and Motivation

Achieving food security for a growing global population will require significant advances in
local capacity, market building, and technology. An important component of improving food security
in the near term is better information on seasonal agricultural production, made available as early
as possible during the growing season and updated as conditions change [1]. For instance, having
timely access to information on crop progress by area can aid in the logistics of harvesting, processing,
and marketing crops. Identifying regions where agricultural planting is delayed, or crop development
is behind schedule, can help inform allocation of resources and improve preparation for mitigating
food insecurity in those regions [2]. However, in many regions of the world, agricultural data lack the
accuracy, centralization, structure, and consistency for farmers and government stakeholders to make
timely decisions [3].
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A lack of accurate and timely data is particularly pronounced for smallholder farms,
the predominant agricultural system in traditionally food-insecure regions of Southeast Asia and
sub-Saharan Africa [4,5]. Smallholder systems are not only the most common form of agriculture in
the world, covering an estimated 75% of the world’s agricultural area [4], but they also produce a large
share of the food consumed by people living in the regions where they are grown [6]. For example,
50% of food calories consumed by people in sub-Saharan Africa are estimated to be from regional
farms smaller than 5 ha [5]. Despite the importance of smallholder systems for addressing food
security, important metrics such as crop productivity are often poorly measured and data at the
subnational or field level are often unavailable [7]. Complicating this issue, smallholder plots in areas
like sub-Saharan Africa have intense intercropping, with multiple different crop types being planted
in close proximity [7–9] and large differences identified in planted crop distributions across different
regions [8].

Remote sensing from satellites and unmanned aerial vehicles (UAVs) can augment ground surveys
and improve the accuracy and timeliness of the agricultural information [10]. Modern publicly
supported satellites, like the Sentinel series operated by the European Space Agency, provide wide-area
coverage (100 km by 100 km image tiles) with revisit frequency of several days, but they have limited
image resolution (ground resolution of 10 to 20 m depending on the band) [11]. UAVs can support
satellite-based crop analytics by providing georeferenced images with much higher resolution, on the
order of centimeters [12]. The analysis of UAV images has been used to provide information on crop
types at a local scale [13] and to create ground-truth datasets for training of satellite-based models [14].
Thanks to the high resolution, crop identification has the potential to be effective not only for large
monocropped fields but also in the smallholder agricultural systems described above.

In this case study, we use images collected from UAVs flown in Rwanda to develop a deep learning
algorithm for identifying food crop types. We focus on bananas, maize, and legumes, which are key to
food security in Rwanda. While most works in the literature using UAVs in smallholder agriculture
focus on a single crop type (see Related Works below), this study modeled six common classes of
land cover to help better understand the feasibility of a more comprehensive, high-resolution crop
mapping for East African smallholder systems. Our objective is to better understand the promise and
challenges of UAV agricultural classification methods in settings vastly different from large monocrop
plots commonly adopted in industrial agriculture.

1.2. Related Works

The majority of remote sensing applications in the literature for smallholder systems rely on
satellite data to classify crops. For East Africa, Jin et al. [8] used multispectral images from Sentinel-1
and Sentinel-2 to train a maize classifier and estimate crop yield in Kenya and Tanzania. Using a
random forest model, they were able to classify satellite pixels of 10 m × 10 m ground area as “maize” or
“non-maize” with an accuracy of 79% in Tanzania and 63% in Kenya. Likewise, Jin et al. [9] developed
a three-class random forest model consisting of (1) maize crops, (2) other crops, and (3) non-crops for
Kenya, resulting in an overall test set accuracy of 80%.

While the literature on UAV for precision agriculture in general is large [15,16], using UAVs to
study crops in smallholder systems is still limited. Yang et al. [17] used a combination of spectral
features, digital surface models, and texture analysis captured by UAV flights to identify rice lodging
in Chiayi County, Taiwan. Using a decision tree classifier, they were able to obtain an accuracy of 96%,
while also demonstrating additional image processing steps that could help minimize commission
error. Jiang et al. [18] used a scale-space filtering algorithm with a Lab color transformation to develop
a papaya tree detection model. Using imagery trained from UAV flights on a papaya farm in the
Guangdong province of China, their model was able to detect papaya trees with an F1 score of 0.94.
Nhamo et al. [19] used a combination of satellite modeling and UAV post- processing correction to
detect irrigated areas in South Africa. This UAV post-processing correction yielded a substantial
increase in accuracy compared with using satellite data alone (from 71% to 96%), providing a prime
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example of how different imagery sources can provide complementary benefits. The study that most
closely resembles ours in its goals is the work by Hall et al. [20], in which they used object-based image
analysis (OBIA) image classification methods on UAV imagery to classify maize on smallholder farms
in Ghana. Using both RGB and near-infrared (NIR) bands, they found classification accuracies for both
single and mosaic images above 94%.

1.3. Our Approach

The objective of this study is to demonstrate a classification algorithm for identifying selected
crops and other types of land cover in RGB images acquired by UAVs. In this paper, we leverage
advances in deep convolutional neural networks (CNNs) [21] to identify selected crop types in
UAV images. Because of their ability to effectively capture both local and global patterns in images,
CNNs have advanced several areas of remote sensing for which high-resolution imagery is available,
including hyperspectral image analysis [22–24], terrain surface classification with synthetic-aperture
radar images [25–27], and 3D reconstruction [28,29]. In particular, CNNs are becoming the established
method for scene classification [30–34], a task in which the goal is to assign an entire image into
one of several distinct semantic classes. Due to this being analogous to our goal of classifying UAV
images representing small areas (roughly 5 m × 5 m on the ground) to classes relevant to agriculture in
Rwanda, we adopt CNNs and transfer learning as the modeling approach for this work. Though scene
classification for identifying crops is rare in the literature (see [35] for a notable exception), the approach
offers two operational advantages in comparison with more granular supervised segmentation-based
models: (1) labeling images is more straightforward and less time consuming than creating bounding
polygons around areas of interest (particularly in the presence of intercropping) and (2) CNNs
designed for image recognition tasks are significantly less computationally expensive, an advantage in
resource-constrained settings.

2. Materials and Methods

2.1. Study Area

The broad study area for this work is the country of Rwanda. Agriculture plays an important
role in Rwanda’s economy, accounting for an estimated 30.9% of the country’s gross domestic product
and 75.3% of the nation’s labor force in 2017 [36]. Fields in Rwanda are often small (<1 ha) and
heavily intercropped [37]; major crops include maize, beans, bananas, cassava, potatoes, and sweet
potatoes. Rwanda has two main growing seasons: Season A extends from September through February,
and Season B extends from March through June [38]. The start and end of the agricultural seasons can
fluctuate, depending on the type of crop, region, and rainfall.

Table 1 shows the percentage of cultivated land occupied by each crop of interest for the districts
in which the six UAV flights were conducted (see Section 2.4 for a full list and description of classes).
The percentage of cultivated land for each crop type was determined from the 2019A Seasonal
Agricultural Survey [38] and varies by district. The percentages are provided for the districts where
UAV flights were conducted, as well as for the entire country for reference. The other labeled categories
(forest, structure, and other) do not fall under cultivated land and are not described at a district level in
the survey. For the entire country of Rwanda, 11% is forest and woodlands (excluding national parks)
and 2.2% is urban areas or rural settlements.
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Table 1. Percentage of cultivated land occupied by each crop of interest (Maize, Beans, and Bananas)
for the districts in which the six UAV flights were conducted. Other classes of interest (Forest, Structure,
and Other) are not reported at the district level in the Rwandan 2019A Seasonal Agricultural Survey.

Crop
District Country

Musanze Karongi Gakenke Kamonyi Nyaruguru Gatsibo Rwanda

Maize 27% 13% 18% 11% 11% 23% 16%
Beans 5% 28% 28% 24% 11% 25% 19%

Bananas 10% 15% 19% 24% 17% 29% 23%

2.2. Data Collection

To develop training data, an in-country service provider, Charis Unmanned Aerial Solutions,
used an eBee Plus UAV (senseFly SA, Cheseaux-sur-Lausanne, Switzerland) to capture UAV images
(Figure 1). The eBee Plus was equipped with a GPS correction system based on the real time kinematic
and post-processed kinematic technology that made it possible to georeference UAV-acquired images
with survey-grade accuracy of 10 cm without the need for ground control points [39]. The UAV
was equipped with a senseFly S.O.D.A. camera (senseFly SA, Cheseaux-sur-Lausanne, Switzerland),
designed specifically for drone applications. This small, ultra-light, and fully configurable camera
with built-in dust and shock protection features a 20 megapixel RGB sensor [40]. The flight plans were
developed by Charis to obtain images with the ground resolution of 3 cm whenever possible; achieving
this resolution required the UAV to fly at an altitude of 122 m above the ground level.
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designed for cross-device compatibility (photos courtesy of senseFly.com). 

To obtain training data, UAV flight sites were selected to represent a diversity in agroecological 
zones and cropping practices (both intercropping and monocropping) (Figure 2). The flights covered 
approximately 80 ha in each location and covered a mix of consolidated land use areas (relatively 
large, monocropped regions (Consolidated land use areas in Rwanda entail participating farmers 
consolidating some aspects of their production with neighboring farmers through cooperatives. They 
agree to grow a single priority crop, identified by the Ministry of Agriculture and Animal Resources, 
while retaining ownership of their individual parcels.)) and smaller, intercropped fields. The 

Figure 1. (a) A eBee Plus unmanned aerial vehicles (UAV) equipped with a (b) senseFly S.O.D.A.
camera was used to collect RGB high-resolution images in the field, using the manufacture’s standard
camera mount. Both the eBee Plus and S.O.D.A camera are manufactured by senseFly and are designed
for cross-device compatibility (photos courtesy of senseFly.com).

To obtain training data, UAV flight sites were selected to represent a diversity in agroecological
zones and cropping practices (both intercropping and monocropping) (Figure 2). The flights covered
approximately 80 ha in each location and covered a mix of consolidated land use areas (relatively
large, monocropped regions (Consolidated land use areas in Rwanda entail participating farmers
consolidating some aspects of their production with neighboring farmers through cooperatives.
They agree to grow a single priority crop, identified by the Ministry of Agriculture and Animal
Resources, while retaining ownership of their individual parcels.)) and smaller, intercropped fields.
The resulting georeferenced RGB images had a target resolution of 3 cm, although actual resolution
varied as a result of terrain constraints requiring different flight heights.



Drones 2020, 4, 7 5 of 14

Drones 2020, 4, x FOR PEER REVIEW 5 of 14 

resulting georeferenced RGB images had a target resolution of 3 cm, although actual resolution varied 
as a result of terrain constraints requiring different flight heights.  

 
Figure 2. Map of Rwanda with district boundaries (black), UAV flight sites (solid red polygons within 
zoomed area), and agroecological zones (various colors). 

2.3. Data Labeling 

Traditionally, the process of crop labeling requires visiting agricultural areas using an electronic 
survey instrument with GPS location capture. Although laborious, this effort is often required 
because visual identification of crop types is difficult or impossible with satellite imagery. However, 
given the high resolution of our UAV images, we were able to use a web-based system to remotely 
label crops at greatly reduced effort. The viewer, constructed using ESRI’s geographic information 
system platform, was designed to support multiple users simultaneously, tracking user and date of 
entry for all collected labels. Tools were provided within the viewer to support capture of labels by 
point location and by polygon delineation. For each point or polygon added by the user, a 
preconfigured menu of attribute options was provided. Polygon delineations were principally used 
to capture large monocrop areas, in which points were randomly sampled to stay consistent with 
direct point observations. To help ensure quality, a local Rwandan agricultural expert performed 
initial labeling of crops in the viewer and supervised a team of three independent labelers remotely.  

For use in the classification models, the collected crop instances in the viewer were further 
processed into discrete images using ArcGIS, with the labeled point at the center of the new image. 
The resulting exported PNG images were 200 × 200 pixels, with each pixel representing 2.5 cm to 
retain the resolution of the original UAV imagery. Prior to training the classification model, the final 
images were quality-checked by our in-country agricultural expert. 

2.4. Data Description 

Our final dataset consisted of six distinct classes: Banana, Maize, Legume, Forest, Structure, and 
a catch-all “Other” category (Figure 3). Each image is labeled with one of the six classes and 

Figure 2. Map of Rwanda with district boundaries (black), UAV flight sites (solid red polygons within
zoomed area), and agroecological zones (various colors).

2.3. Data Labeling

Traditionally, the process of crop labeling requires visiting agricultural areas using an electronic
survey instrument with GPS location capture. Although laborious, this effort is often required because
visual identification of crop types is difficult or impossible with satellite imagery. However, given the
high resolution of our UAV images, we were able to use a web-based system to remotely label crops at
greatly reduced effort. The viewer, constructed using ESRI’s geographic information system platform,
was designed to support multiple users simultaneously, tracking user and date of entry for all collected
labels. Tools were provided within the viewer to support capture of labels by point location and by
polygon delineation. For each point or polygon added by the user, a preconfigured menu of attribute
options was provided. Polygon delineations were principally used to capture large monocrop areas,
in which points were randomly sampled to stay consistent with direct point observations. To help
ensure quality, a local Rwandan agricultural expert performed initial labeling of crops in the viewer
and supervised a team of three independent labelers remotely.

For use in the classification models, the collected crop instances in the viewer were further
processed into discrete images using ArcGIS, with the labeled point at the center of the new image.
The resulting exported PNG images were 200 × 200 pixels, with each pixel representing 2.5 cm to retain
the resolution of the original UAV imagery. Prior to training the classification model, the final images
were quality-checked by our in-country agricultural expert.

2.4. Data Description

Our final dataset consisted of six distinct classes: Banana, Maize, Legume, Forest, Structure, and a
catch-all “Other” category (Figure 3). Each image is labeled with one of the six classes and represents
roughly 5 m2 on the ground. The three agricultural classes (Banana, Maize, and Legume) were
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chosen to represent priority food security crops that are both prevalent and important to livelihoods in
Rwanda [41,42]. Common land cover types prevalent in the Rwandan countryside were included as
additional classes (Forest and Structure). In cases when more than one class is present within the same
image, labelers were instructed to label for the class occupying the majority of the image; implications
for this choice are further expanded on in the Discussion section.
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Figure 3. Example images of the six classes used for training and validating the CNNs; (a) Banana,
(b) Maize, (c) Legume, (d) Forest, (e) Structure, and (f) Other.

After labeling, the images were randomly divided into a training set for model building (80.0%)
and a test set for model evaluation (20.0%). The sampling into training and test sets was stratified
to preserve the class ratios present in the full labeled dataset. Table 2 depicts the number of each
class contributing to the training and test sets, respectively. Overall, the most heavily represented
classes are Maize (32.2%), Banana (25.8%), and Forest (19.7%), while the Other (11.6%), Legume (5.6%),
and Structure (5.1%) classes comprise relatively smaller shares.

Table 2. Training and test dataset split. The quantities in this table describe the number of images for
each class across all six sites after being partitioned into training and test sets.

Class # Training # Test

Maize 1660 415
Banana 1329 332
Forest 1016 254
Other 600 150

Legume 290 73
Structure 265 66

Total 5160 1290

For modeling, RGB values were extracted for each pixel in the training and test images. The RGB
values for each pixel in each image were extracted using the Python Imaging Library and were resized
from 200 pixels × 200 pixels to 150 pixels × 150 pixels to match the pre-processing steps outlined in the
paper for the model architecture explained below. Radiometric corrections were not performed on the
RGB values in preparation for the algorithm development. In the literature, deep learning models
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using high-resolution satellite or drone imagery for patch-based classification tend not to include a
radiometric correction [30,32–34], likely because the algorithm relies on localized patterns of contrast
(e.g., edges) rather than direct pixel-wise comparisons of color for analysis. Additionally, there is
growing evidence that increasing the variation and distortion within training data images (a practice
known as data augmentation) tends to help deep learning models improve performance [43].

2.5. Agricultural Classification Model

In this study, we used a machine learning approach for distinguishing UAV images that contain
at least one of our six target classes. Specifically, we used a deep neural network (DNN), a type of
artificial neural network that includes several chained layers of processing between the input (i.e.,
an image) and the output (i.e., a classification/label of the input image). Each processing layer amounts
to a mathematical function that takes a tensor (i.e., n-dimensional matrix) from a previous layer as
input, transforms it, and then outputs a new tensor. Various types of layers are commonly used
in deep learning research. For example, convolutional layers create summary feature tensors (i.e.,
activation maps) of their input via convolution matrix operations. Pooling layers down-sample feature
tensors to reduce their spatial size and reduce the total amount of parameters (i.e., weights) in the
network. A common final layer for DNNs is the fully connected layer, which maps a feature tensor to a
probability distribution of the target classes.

At a high level, a DNN is simply a series of functions that takes an input and returns a predicted
label. The training process for a supervised DNN entails repeatedly passing labeled data through the
network, using a loss function to evaluate how well the model performed at correctly identifying the
true classes. The model optimizes for this loss function by computing the gradient of the loss function
with respect to the model parameters, updating the model parameters iteratively during training to
minimize the loss. A single test, evaluation, and update pass through the model is called an epoch,
and the total training process typically requires several epochs to reach a point where the loss has
reached a stable local minimum.

Training an exceedingly deep network from scratch was prohibitive for our sample size because
most state-of-the-art deep learning models require fitting millions of model weights; our dataset sample
size was insufficient for robustly fitting this many parameters. To address this challenge, we used a
transfer learning approach [44,45] to initialize our model with weights from a CNN trained on a much
larger dataset. The aim of transfer learning is to use a model trained in one source domain to help
accelerate model building in a related target domain. In our case, we used the ImageNet dataset [46],
a labeled image dataset consisting of over 14 million high-resolution images in 1000 categories as our
source domain, and our labeled UAV images as the target domain. By using pretrained weights, our
model was initialized with latent image features useful for distinguishing complex classes learned
during the training process of the source model. We built off these by then training a model specifically
for agricultural classification in Rwanda.

For our pretrained model, we used the VGG16 architecture [47] originally trained on the
aforementioned ImageNet dataset. A DNN architecture is a blueprint of specific layers and parameters
for those layers. VGG16 is a deep CNN model architecture first introduced in the ImageNet Large-Scale
Visual Recognition Challenge 2014 (ILSVRC 2014), where it placed second on the “classification and
localization” challenge task. This architecture remains popular today because of its relatively simple
construction that involves alternating sets of convolutional and max pooling layers with a final set of
fully connected layers.

To develop our agricultural classification model, we first ran our UAV images through the
pretrained VGG16 model without the final layers to generate feature tensors for each image. This method
is commonly referred to as feature extraction [19], because the outputs are feature tensors rather than
class predictions. These feature tensors are created by applying operations useful for discriminating
between classes in the source domain, creating a transformed representation of the original images
that often improves classification. We used this as input to a shallow feed-forward network to classify



Drones 2020, 4, 7 8 of 14

our specific categories. This smaller network consisted of one fully connected layer with sigmoid
activation [48], a dropout layer to help with overfitting (probability of dropout = 0.5) [49], and a
final output layer with a softmax activation function [48] to produce class probabilities for the six
classes. At test time, the class with the highest modeled probability was assigned as the predicted
class. The Adam optimizer [50] was used for gradient updates, and categorical cross-entropy was used
as the loss function. The final model was trained with a batch size of 215 images and with the loss
stabilizing at roughly 20 epochs.

3. Results

Table 3 summaries the results of the classification model on the test set. The overall model
recorded an F1, precision, recall, and accuracy each at 0.86, whereas the kappa coefficient was slightly
lower at 0.82. The Banana, Maize, Forest, and Structure classes all performed well with an F1 score
near or exceeding 0.90. However, images labeled as Legume or Other by human coders were more
difficult to consistently classify, having test set F1 scores of 0.49 and 0.62, respectively. For a visual
representation of this model’s predictions over a UAV flight area, Figure 4 juxtaposes a stitched drone
image panel of the Kabarama site (right) with the overlaid model predictions (left).

Table 3. Model test set evaluation metrics. To calculate accuracy and kappa scores per class, the
multi-class confusion matrix (Table 4) was decomposed into six individual binary confusion matrices
by changing all labels that were not the positive class to the negative class.

Class F1 Score Precision Recall Accuracy Kappa

Banana 0.96 0.97 0.95 0.98 0.95
Forest 0.89 0.88 0.90 0.96 0.86
Legume 0.49 0.57 0.42 0.95 0.46
Maize 0.90 0.87 0.93 0.93 0.85
Other 0.62 0.67 0.58 0.92 0.58
Structure 0.89 0.84 0.95 0.99 0.89

Overall 0.86 0.86 0.86 0.86 0.82

Table 4. Confusion matrix for the test set. Correct predictions are highlighted in bold along the diagonal.

Predicted

Banana Forest Legume Maize Other Structure

Actual

Banana 315 3 0 9 5 0 332
Forest 0 229 4 6 12 3 254

Legume 1 5 31 20 15 1 73
Maize 3 6 9 388 9 0 415
Other 5 17 10 23 87 8 150

Structure 0 1 0 0 2 63 66

324 261 54 446 130 75
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Figure 4. Comparison of (a) predicted crop classifications for the Kabarama site and (b) the stitched
drone imagery for the Kabarama site.

We hypothesized that the lower model performance on these two groups is largely due to high
within-class heterogeneity. Both the Legume and Other classes are an aggregation of multiple more
specific categories; the Legume class contains instances of climbing beans, bush beans, and peas,
and the Other class contains a diverse set of agricultural and land cover classes, including fallow
land, water, cassava, and sweet potatoes. Furthermore, these classes have among the smallest number
of training examples in the model (Legume, n = 290; Other, n = 600), due in large part to the low
prevalence rates of the individual component classes in our study area. Even though there is no
consensus for a minimum recommended sample size for effective transfer learning, classifiers tend to
perform better with more labeled examples and balanced class ratios. Lastly, several images actually
contain more than one class, preventing a clean single designation. This issue is particularly acute for
the Legume class, in which images may also contain crops like maize in the same grid. The confusion
matrix (Table 4) numerically demonstrates this interaction—20 of the images labeled legumes were
“misclassified” as maize by the model. Figure 5 depicts such an example showing climbing beans
sprouting between rows of maize crops.
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4. Discussion

Our findings suggest that CNN-based classification models can be effective for identifying certain
crops and land categories when trained on low-altitude UAV images. This finding is promising, given
the challenging conditions posed by smallholder farm systems in Rwanda (e.g., intercropping, small
plots, heterogeneous landscapes). In particular, our findings suggest that at least some important food
security crops (bananas and maize), as well as traditional land cover and use categories (forested areas
and built structures), can be detected with high accuracy. However, legumes were most difficult to
consistently detect, possibly because of the diversity of legumes present in the labeled images, their less
pronounced aerial profile when compared with above-ground crops such as maize, and/or their higher
likelihood of intercropping. Likewise, the broad diversity of images in the Other class made consistent
characterization difficult. While our initial hypothesis that dividing UAV imagery into small areas for
modeling would help reduce misclassification error associated with intercropping, results from the
confusion matrix suggest it still affects model performance even at this scale for certain key crops.

Though few studies closely resemble our work for direct comparison, our findings generally
complement other related works in the literature. Lottes et al. [51] performed a classification of sugar
beets and different weed types gathered from UAV flights in Germany and Switzerland. Using a
random forest classifier trained on RGB images, they obtained an overall accuracy of 86% for predicted
objects and 93% of the area correctly classified. Although they reported high detection rates for many
plant types (e.g., 78% recall and 90% precision for sugar beets), they also experienced poor model
performance for their catch-all class (“other-weeds”), obtaining a recall of 45%. Of the studies reviewed,
the methodology of Hung et al. [52] is the most similar to our approach, although our categories of
interest and geography differ. They used a feature learning–based approach on RGB images captured
from low-flying UAVs to identify patches of different weed types (water hyacinth, serrated tussock,
and tropical soda apple) in New South Wales, Australia. Searching over a grid of different pixel and
window sizes, they found a best F1 score of 94.3% for water hyacinth, 92.9% for serrated tussock,
and 72.2% for tropical soda apple. For studies focusing on UAV classification in smallholder systems,
Hall et al. [20] used a combination of RGB and NIR imagery to classify maize in Ghana. Using an
OBIA approach, they reported an overall accuracy above 94% compared with our F1 of 90% for maize.
This finding suggests that incorporating additional sensor readings may help improve classification
results, even in difficult smallholder environments.

4.1. Study Limitations

Though promising, our study has several limitations. First, using high-resolution UAV imagery
has its challenges. For instance, photogrammetry software can struggle to stitch overlapping UAV
images in the presence of complex geometry (e.g., plants with thousands of branches and leaves).
Generally, flights with high overlay and high flight altitude tend to help minimize distortion during
reconstruction. Even though our flights had high overlap (75 to 80%), because of our relatively low flight
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altitude, images for certain types of classes exhibit distortion (e.g., forests). This distortion at times made
labeling more challenging, but we do not expect this problem to significantly affect the performance
of the CNNs, because distortion is often added to input images purposely to prevent overfitting and
aid in generalization [43]. Second, our results encompass images from only six nonrandom UAV
flight sites totaling 480 ha. Although we selected sites for their diversity in agroecological zones
and cropping patterns (both intercropping and monocropping), we cannot guarantee that these sites
are fully representative of Rwandan farmland. Similarly, labeled crop instances were not chosen at
random from the drone flight areas but, rather, were adaptively selected to ensure coverage of the crop
types of interest. Even though this process was useful for generating training data, it may introduce
selection bias if most areas in the drone flight areas are unlike the labeled images. A related caveat
is that although we labeled only the classes that our in-country agricultural expert could identify
from the UAV imagery, we did not compare our labels to independent ground truth from the field.
This limitation is less severe for crop classification but will likely be important if this labeling approach
is extended to yield estimation. Lastly, the issue of intercropping can make developing ground-truth
labels and predictions challenging, even at the scale of 5 m × 5 m grids. Even though we required
labelers to choose a single category for each image, as shown in Figure 4, several crops can and often
appear within the same image. This problem is an ongoing issue noted by other research teams working
in East Africa [8,9] and especially in Rwanda, which has among the most intensive intercropping
systems and smallest plot sizes in the world. We believe that investigating effective methods of crop
identification in the presence of intercropping is a fruitful area for future study.

4.2. Future Research

Although identifying crop types from UAV images is useful for understanding local agricultural
trends, scaling to entire districts or countries in the near future will likely require input from satellite
data because flying drones multiple times across the extent of a large administrative unit may be
cost prohibitive. However, we believe UAVs may provide a low-cost, high-throughput option for
creating labeled data for machine learning models trained on lower resolution satellite imagery.
This approach seems particularly promising given the effort required for developing ground-truth
data using traditional field enumeration techniques. Future research could use computer-labeled UAV
images as “noisy” ground-truth labels for crop classification models and compare the accuracy of such
hybrid models with the accuracy of models based solely on labeling by human observers [10]. As the
resolution of satellite imagery improves, similar approaches to remote labeling combined with deep
learning models should become even more attractive for crop predictions of complex agricultural
systems at scale.

Although a popular standard in the remote sensing literature, the ImageNet dataset used in the
pretrained model does not contain aerial images. Future research could test the marginal benefit of
using a model pretrained on a large dataset of satellite imagery, such as the Functional Map of the
World [53]. Additionally, although classification using just RGB bands was effective for certain crops
and land use categories in our model, future work can better understand how multispectral bands
improve classification performance in this setting. An important operational consideration is how
much labeled data are required to train models that generalize well across the intended population
area. Although not covered in this study, performing cross-site validation and using diagnostics like
learning curves (see [31] for an example) can help stakeholders better plan for future studies.

Lastly, future research should expand the relevant crop types for modeling to include others
of strategic importance to countries in sub-Saharan Africa and prioritize modeling approaches that
address the unique challenges of intercropping. This focus is key for many nations with a high
proportion of smallholder farms, such as our study area in Rwanda, where intercropping systems
account for 75% of the food production systems [38].
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